COURSE OUTLINE

1. GENERAL					
SCHOOL	APPLIED BIOLOGY AND BIOTECHNOLOGY				
ACADEMIC UNIT	BIOTECHNOLOGY				
LEVEL OF STUDIES	BACHELOR OF SCIENCE				
COURSE CODE	3600	SEMESTER 5 th (fall semester)		(fall	
COURSE TITLE	NANOBIOTECHNOLOGY AND BIOSENSORS				
INDEPENDENT TEACHI	ING ACTIVITIES WEEKLY				
if credits are awarded for separate components of the course, e.g.			TEACHING	i	CREDITS
	cises, etc. If the credits are awarded for the whole HOURS			0.120110	
of the course, give the weekly teaching hours and the total credits					
Lectures			2		0,08
Laboratory Courses		2		0,08	
Tutorials/essays/practice actions		1,5		0,06	
TOTAL ECTS (Table 4)				5,00	
Add rows if necessary. The organisation of teaching and the teaching					
methods used are described in detail at (4)					
COURSE TYPE	Advanced (Le	evel 7)			
general background, special background, specialised general knowledge, skills					
development					
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	YES (in English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area

- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- I Guidelines for writing Learning Outcomes

The course is the basic introduction to the scientific field of biosensors and nanotechnology and their applications in life sciences, as well as all affiliated techniques and methods used for the development, study and application of biosensors and nanotechnologies in modern analytical and diagnostic science, food safety and environmental monitoring.

The educational context aims to introducing students to the principles of nanotechnology, Biosensors, Electrochemistry and Microengineering, covering wide area of supplementary knowledge, including in-depth elements of microfluidics, photonics, biomolecular processes, molecular recognition, analytical chemistry and quality control.

It also refers to introductory principles and methodologies for designing and standardizing mircoelectromechanical systems (MEMS) and biosensors, carrying out analyses with high throughput systems, the use of expert systems, knowledge of materials used in MEMS and basic microengineering techniques (lithography, etching etc).

Finally, the course aims to provide to students a comprehensive review of the importance of biosensors and nanotechnology on modern analytical and diagnostic science and their contribution to the industry and service sectors. In parallel, it fosters the perspective career opportunities with specialization in analytical science with advanced methods.

ronowli	ng the completion of the course, stu • Understand the principles						
	 Understand the principles of biosensors and nanotechnology, their affiliated technologies and fields of application. 						
	biosensor systems.						
	• Design basic MEMS.						
		using at least two different biosensor types.					
	 Apply skills and knowledge for designing novel biosensor-bas 	r seeking new technologies and utilize research results for					
		ents in order to prepare and publicly present a plan of					
		nsor-based approaches to a real application/analytical					
	need, having in parallel acquir	ed oral and written presentation skills.					
General	l Competences						
Taking ir	-	at the degree-holder must acquire (as these appear in the Diploma g does the course aim?					
Search f	or, analysis and synthesis of data and	Project planning and management					
informat technolo	tion, with the use of the necessary	Respect for difference and multiculturalism Respect for the natural environment					
	g to new situations	Showing social, professional and ethical responsibility and					
	n-making g independently	sensitivity to gender issues Criticism and self-criticism					
Team we	ork	Production of free, creative and inductive thinking					
-	g in an international environment g in an interdisciplinary environment	Others					
	tion of new research ideas						
٠	Autonomous work						
٠	Team work						
٠	Work in a multidisciplinary envir						
٠	Production of new research idea	-					
•	Promotion of free, creative and i	inductive thought					
3. SYL	LLABUS						
1.	Biosensors: A historical review.						
2.	Principles of nanotechnology						
3.	Elements of electrochemistry	Elements of electrochemistry					
4.	Cyclic voltammetry, voltammetry and chronoampeormetry						
5.	Electrochemical impedance spec	trometry					
6.	Optical biosensors						
7.	Cell-based biosensors						
8.	Methods for immobilizing/entra	pping biomolecules					
9.	•	(MEMS) – Introduction to Microenginnering.					
	Commercial applications						
10.	Basic Microengineering technologies: lithography, imprinting, surface						
	microenginnering, volume micro						
11	0	ations, protein separation and direct screening for					
11.	disease agents						
17	-	histoptort					
		tificial intelligence systems in biosensors					
13.	3. Application of MEMs in life sciences. DNA analysis. Application of microelectrode						
	arrays						
14.	Application of biosensors in food	safety and environmental monitoring					

14. Application of biosensors in medicine and life sciences

16.	Other	applications	of biosensors
-----	-------	--------------	---------------

4. TEACHING and LEARNING METHODS - EVALUATION

4. TEACHING and LEARNING	IVIE THOUS - EVALUATION			
DELIVERY Face-to-face, Distance learning, etc.	Class courses (amphitheater/lab courses room)			
USE OF INFORMATION	Power point presentations			
AND COMMUNICATIONS	Distant educational support through the e-class electronic			
TECHNOLOGY	platform.			
Use of ICT in teaching, laboratory	Communication of assessment of student tests and group			
education, communication with students	- ·			
TEACHING	studies through e-mail			
METHODS	Δραστηριότητα	Φόρτος Εργασίας Εξαμήνου		
The manner and methods of teaching	Lectures courses	26 h		
are described in detail.		26 h		
Lectures, seminars, laboratory practice, fieldwork, study and analysis of	Laboratory courses in small student groups	2011		
bibliography,	Groupwork (3-5 students):	20 h		
tutorials, placements, clinical practice,	Preparation of plan of	2011		
art workshop, interactive teaching, educational visits, project, essay	natotechnological and			
writing, artistic creativity, etc.	biosensor-based			
	approaches to a real			
The student's study hours for each learning activity are given as well as the	application/analytical need			
hours of non- directed study according	Autonomous study	53 h		
to the principles of the ECTS	Total	5511		
	(25hours of working input	125 h		
	per credit unit)	(5 ECTS)		
STUDENT PERFORMANCE	I. Written Examination in theory (50%) including:			
EVALUATION	- Multiple choice tests			
Description of the evaluation	-	referring to the available		
procedure		neering technologies and their		
Language of evaluation, methods of	application opportunities	0		
evaluation, summative or conclusive,				
multiple choice questionnaires, short- answer questions, open-ended	1 1 II Examination in Jahoratory courses (50%) including:			
questions, problem solving, written				
work, essay/report, oral examination, public presentation, laboratory work,				
clinical examination of patient, art	2. Written examination in laboratory courses including:			
interpretation, other				
Specifically defined analystics statistics	- Multiple choice questions			
Specifically-defined evaluation criteria are given, and if and where they are	- Critical analysis questions			
accessible to students.				
	The final grade for the course is determined by the total			
	results for the different parts of the examination.			
	results for the different part	is of the examination.		

5. ATTACHED BIBLIOGRAPHY

-Suggested textbooks:

- *Μ. Προδρομίδης,* Ηλεκτροχημικοί Αισθητήρες & Βιοαισθητήρες, 2010
- F.S. Ligler, Optical Biosensors: Present & Future, Elsevier 2002
- *J.Y.Yoon*, Introduction to Biosensors: From Electric Circuits to Immunosensors, Springer 2012
- J. Li, N. Wu, Biosensors Based on Nanomaterials and Nanodevices (Nanomaterials and their Applications), CRC 2013

-Related scientific journals:

- Biosensors and Bioelectronics
- Sensors & Actuators