COURSE LAYOUT

1. GENERAL

SCHOOL	APPLIED BIOLOGY AND BIOTECHNOLOGY				
DEPARTMENT	BIOTECHNOLOGY				
STUDY LEVEL	Undergraduate				
COURSE CODE	236	SEMESTER 9th			
COURSE TITLE	Environmental Data management, analysis and visualisation with R				
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	ECTS		
LECTURES			2	0,08	
PRACTICAL EXERCISES			2	0,08	
ESSAYS			1	0,04	
TOTAL ECTS (Table 4)				5,00	
COURSE TYPE	Specialization and Development of Professional Skills				
PREREQUISITES	No				
LANGUAGE	Greek with English support in terminology				
IS THE COURSE OFFERED forERASMUS STUDENTS?	YES (in Greek)				
COURSE WEB PAGE	https://mediasrv.aua.gr/eclass/courses/260/				

2. LEARNING OUTCOMES

Learning Outcomes

The course is an introduction to the environmental data analysis with R programming language.

On completion the student will be capable of:

- Working the R language environment (native GUI and RStudio).
- Installing and operating R language on a personal computer.
- Entering its own research data locally or from remote databases.
- Modifying the dataset to the appropriate format for further analysis.
- Performing the basic data analysis (descriptive statistics, regression, etc.).
- Visualising the data and the analysis' results.
- Exporting and sharing the analysis results and the visualisations.
- Understanding and operating the versioning control frameworks (e.g. Git, GitHub).

General Competencies

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Adaptation to new situations.
- Decision making.
- Autonomous work.
- Teamwork.
- Production of new research ideas.
- Project design and management.

3. COURSE CONTENT

1. Introduction to R

Theory

- o Brief history of R
- o Key features of R (advantages, peculiarities, limitations)

Laboratory

- o Introduction to the environment of R (GUIs)
- o R and RSTUDIO installation
- o Introduction to the RSTUDIO environment

2. Objects in R

Theory

- o R Object categories
- o Use and utilization of the R objects
- o Type and classes of the R objects

Laboratory

- o Introduction to the R objects
- o Object conversions
- o Utilization of objects in real data

3. Vectors and operators in R

Theory

- o Operators
- o Numerical functions
- o Vectors

Laboratory

- o Operations with operators and vectors
- o Expression of numerical functions in R
- o Problem solving with user defined functions

4. Tables, databases and lists

Theory

- o Two-dimensional / multidimensional arrays
- o Types of data vectors
- o Data box and lists

Laboratory

- o Data entry
- o Converts between vectors / frames and lists
- o Data export

5. Introduction to the concept of project in RStudio

Theory

- o Analysis of the "project" in RStudio and the benefit of working in such a context
- o The parts and limitations of the RStudio project

Laboratory

o Creation and work of a real RStudio project

6. Receive and manage data from remote databases with R

Theory

- o Introduction to Big Environmental Databases
- o Procedure and restrictions on receiving data from remote databases
- o Data management process

Laboratory

- o Example of receiving data from a remote database
- o Downloading of data from WEB databases and APIs
- o Data management problems

7. Specialized packages, commenting and naming in R

Theory

- o What are the packages of R
- o The comments in writing R scripts
- o Good practices regarding comments and object names in R

Laboratory

- o Download and install packages
- o Write code with comments and use them
- o Complete script writing with emphasis on its good organisation for interdisciplinary communication

8. Data processing and analysis using the dplyr package

Theory

- o The basic commands and symbolism of dplyr
- o Working procedure with dplyr
- o Comparison with other base R approaches

Laboratory

- o Perform analysis of real environmental data with dplyr
- o Export results to table formats
- o Create graphs with the basic functions of R

9. Visualization of data analysis using ggplot2

Theory

- o Basic structure of ggplot2 commands and arguments
- o Grammar of ggplot2

Laboratory

- o Creating graphics from environmental data analysis
- o Create graphics with multiple panels
- o Export graphs in various dimensions, resolutions and formats

10. Basic statistical analysis of data with R

Theory

- o The basic commands for performing statistical analysis
- o Commands for descriptive statistics results' exporting
- o Data exporting process in a variety of formats

Laboratory

- o Perform descriptive analysis of environmental data
- o Perform regression analysis
- o Formatting and exporting analysis results

11. Creating user defined functions in R

Theory

- o Introduction to the functions of R
- o Basic characteristics and structure of functions

Laboratory

o Solve a problem using a user defined function

12. Versioning in R

Theory

- o Introduction to version control
- o Introduction to the basic code of the control tools

Laboratory

- o Install git
- o Git functions

13. Good practices in writing and correcting code in R

Theory

o Basic code structures

- o Code search and debuging procedures
- o Introduction to the basic knowledge repositories for resolving code errors

Laboratory

- o Execute code and search for errors
- o Find and fix errors
- o Navigate and search for solutions in knowledge repositories

4. TEACHING and LEARNING METHODS - Evaluation

TEACHING METHOD	In suitably equipped teaching rooms. Distant Learning			
USE OF INFORMATICS and COMMUNICATION TECHNOLOGIES	The course is completely computerised in the form of Powerpoint, Web linking, etc. Computer programmes and appilications are taught			
	and distributed to students, for the analysis Of data. The support of learning process and the necessary			
	materials are facilitated by the electronic, web based e-class and MS Teams platform			
TEACHING ORGANISATION	Activity	Work Load		
	Lectures (direct)	26 h		
	Laboratory work	26 h		
	Group and/or individual works	13 h		
	Autonomous study	65 h		
	Total contact hours and	130 h		
	training	(5 ECTS)		
STUDENTS EVALUATION	I. Written/oral final examination (30%) of different difficulty, based on the lectures offered, containing:			
	- Questions of multiple choice.			
	- Questions of theoretical knowledge.			
	- Problems based on lecture material.			
	I. Laboratory exercises/practicals (30%).			
	II. Group and small autonomous works (20%).III. Internet questions (20%)			

5. **BIBILIOGRAPHY**

- 1. Φουσκάκης Δ. 2013. Ανάλυση Δεδομένων με Χρήση της R . Εκδόσεις Τσότρας. Αθήνα.
- 2.Βερύκιος, Β., Καγκλής, Β., Σταυρόπουλος, Η. 2015. Η επιστήμη των δεδομένων μέσα από τη γλώσσα R, ΣΕΑΒ, Κάλλιπος Ξενόγλωσση
- 3.Wickham, Hadley, and Garrett Grolemund. 2016. R for data science: import, tidy, transform, visualize, and model data. O'Reilly Media, Inc.
- 4. Teetor, Paul. 2011.R cookbook: Proven recipes for data analysis, statistics, and graphics. O'Reilly Media, Inc.