COURSE LAYOUT

1. GENERAL				
SCHOOL	APPLIED BIOLOGY & BIOTECHNOLOGY			
DEPARTMENT	BIOTECHNOLOGY			
STUDY LEVEL	Undergraduate			
COURSE CODE	218 SEMESTER 6th			
COURSE TITLE	BIOPHYSICS			
INDEPENDENT TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	ECTS	
LECTURES			3	3
PRACTICAL EXERCISES			2	2
TOTAL				5
COURSE TYPE	Scientific Specialization			
PREREQUISITES	Physics, Biochemistry			
LANGUAGE	Greek with English support in terminology			
IS THE COURSE OFFERED for ERASMUS STUDENTS?	YES (in English)			
COURSE WEB PAGE	http://openeclass.aua.gr/courses/BIOTECH131/			

2. LEARNING OUTCOMES

Learning Outcomes

The course is a basic introductory course in Biophysics techniques used in the analysis of the structure of biomolecules (proteins, DNA, RNA) such as X-ray crystallography, scattering techniques, multidimensional NMR, molecular dynamics as well as other quantitative techniques such as calorimetry, circular dischroism and fluorescence spectroscopy. Finally, the course aims to help students understand the applications of these techniques in the design of drugs and other bioactive molecules.

Upon successful completion of this course the student will be able to

- Have an understanding the basic features of the biophysical methods
- Is capable of knowing when to use these methodologies
- Analyze and calculate basic information
- Present the results of a relevant study

General Competences

Search, analyze and synthesize data and information, and the use of essential technologies Teamwork

Work in a multidisciplinary environment

Search, analyze and synthesize data and information, and the use of essential technologies

3. COURSE CONTENT

Theory: Review of the structure of biological macromolecules. X-ray Diffraction. Crystals. Crystallization. Theory of x-ray diffraction. Reciprocal space. Crystallographic symmetry. Structure factors and Intensities. Data Collection. Electron Density Function. Approaches to the Phase Problem. Structure refinement. Radiation scattering from solutions of macromolecules. Thermodynamics and Biochemistry. Calorimetric methods. Molecular Mechanics, NMR Spectroscopy, circular dischroism, fluorescence spectroscopy, Applications in drug design and Nanotechnology

Laboratory: Determination of thermodynamic parameters for salt dissolution, crystallization of lysozyme, diffraction experiments with lysozyme crystals, analysis of electron density map for lysozyme-ligand complex, fluorescence microscopy image processing.

4. TEACHING and LEARNING METHODS - Evaluation					
TEACHING METHOD	In suitably equipped teaching rooms				
USE OF INFORMATICS and	Use of powerpoint presentations and Phet/e-				
COMMUNICATION TECHNOLOGIES	crystallography simulations in lectures, use of				
	specialized software such as the WinCoot, use of e-				
	class website and videos to inform, educate and				
	communicate with students				
TEACHING ORGANISATION	Activity	Work Load			
	Lectures	39			
	Laboratory exercises	20			
	Educational visit	10			
	Independent study	56			
	Course total	125			
	(25 hours of student work loadper ECTS)	125			
STUDENTS EVALUATION		$x_{\text{omination}}(100\%)$			
STODENTSEVALOATION	I. Theory: Written final examination (100%)				
	comprising: multiple choice questions, problem				
	solving and short answer questions. Optional				
	exercises during lectures (bonus 10% grade)				
	II. Laboratory: Tests before each laboratory				
	session (15%), written assignments on the				
	laboratory exercises (50%), written final				
	examination (35%).				

4. TEACHING and LEARNING METHODS - Evaluation

5. **BIBILIOGRAPHY**

- 1. Principles in Physical Biochemistry (van Holde, Johnson, Ho) 2nd Edition
- 2. Themata Moriakis Biofysikis (Hamodrakas) Symmetria publications